Feeding and Nutrition in Aquaculture (P1)

Course designed for industry education

Alexandra Leeper alexandral@matis.is

> Co-funded by the Erasmus+ Programme of the European Union

The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

Course Outline

- Total of six modules.
- Taught over two teaching periods and one online session

November 2-3

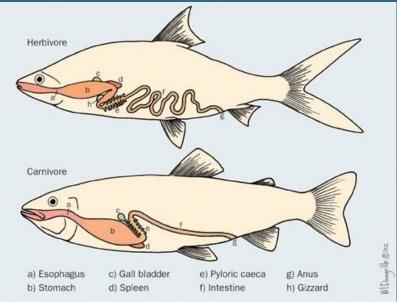
Module 1: The digestive biology of fish. Module 2: Key nutritional requirements of fish. Module 3: Aquafeed formulation. *Homework 1

<u>Online Session</u>: Homework and question time.

November 15-16(?) Module 4: Food production and storage. Module 5: Feeding and feed intake. Module 6: Feed additives and further knowledge. *Homework 2

Learning Outcomes

Aim of course: Provide students with a strong introduction of feeding and nutrition in aquaculture with reference to salmonids.


At the end of the course students will be able to:

- List and describe basic **nutrients**.
- Describe the feeding **<u>anatomy</u>** and digestion of fish.
- Describe the different parameters that can impact **feed intake** in fish.
- Identify changes in **appetite** of farmed fish.
- Describe the **production of aquaculture feed**.
- Handle feed, understand labels and **storage** instructions.
- Explain the importance of <u>feed rations</u> and pellet size.
- Explain the consequences of over-feeding/underfeeding.

Day 1

Module 1: The digestive biology of fish.
*Exercise 1.1

Module 2 Part 1: Key nutritional requirements.
 *Exercise 2.1

Day 1 Tuesday

18:00-18:30-Introduction and Course Outline

18:30-20:00 Lecture slides for Module 1 (S19)*

20:00-20:15 Coffee Break and Questions

20:15-21:45 Lecture slides for Module 1 & 2 (S35)*

21:45-22:00 Questions

Alexandra Leeper

3/2/2020

Day 2 Wednesday

18:00-18:30-Re-cap of yesterday & Mini Quiz

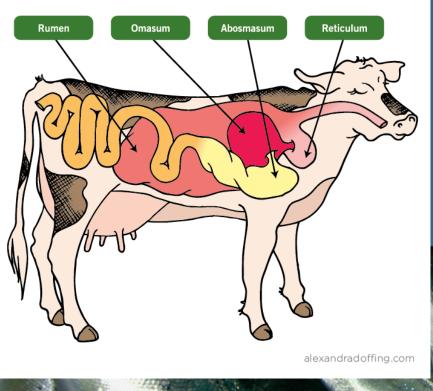
18:30-20:00 Lecture slides for Module 2 (48)*

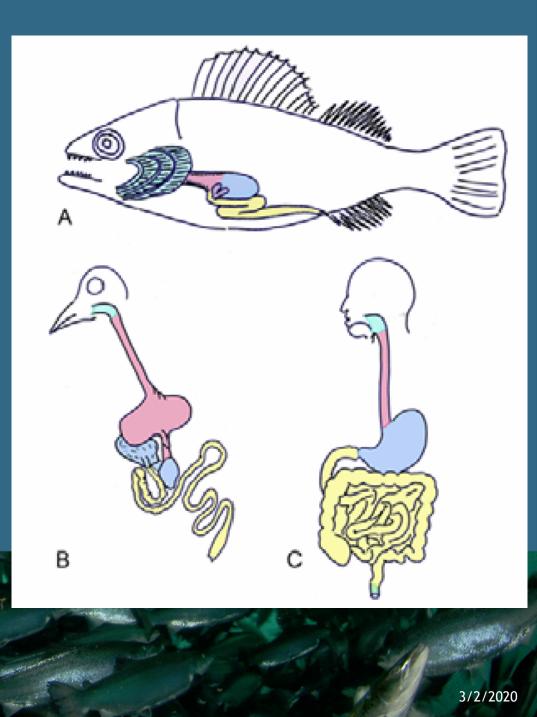
20:00-20:15 Coffee Break and Questions

20:15-20:30 Lecture slides for Module 1 (S48-53)*

20:30-21:30 lecture slides for Module 2 (S53-60)*

21:30-22:00 Review quiz & homework setting

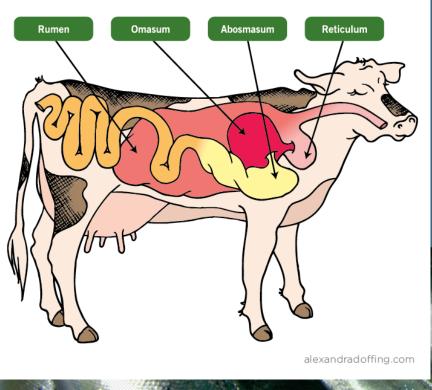

Alexandra Leeper


3/2/2020

Digestion = The process by which food is <u>broken down</u> into simple chemical compounds that can be <u>absorbed</u> and <u>used</u> as nutrients or eliminated by the body.

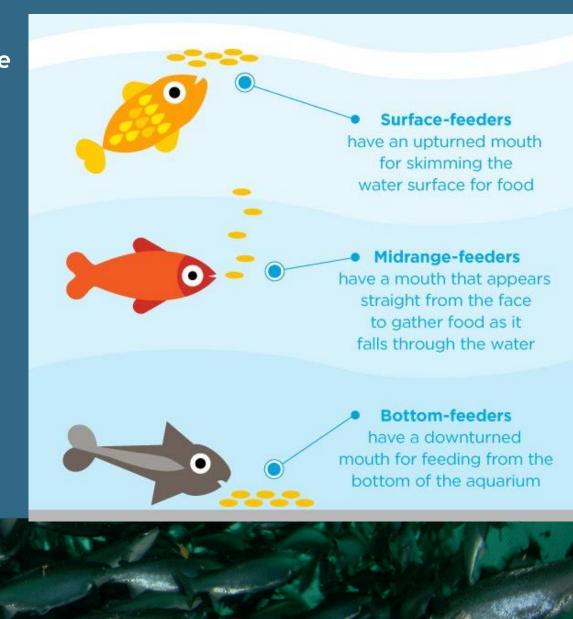
Mono-gastric = having a stomach with only a single compartment.

Ruminant= four stomachs and eat plant matter with the help of enzymes.



Digestion = The process by which food is <u>broken down</u> into simple chemical compounds that can be <u>absorbed</u> and <u>used</u> as nutrients or eliminated by the body.

Mono-gastric = having a stomach with only a single compartment.


Ruminant= four stomachs and eat plant matter with the help of enzymes.

• Even within the fish kingdom there is a huge difference in digestive biology.

- Factors affecting digestive biology:
 - -Feeding strategy -Nutritional content -Size & structure of feed -How easy the food is to digest -Environmental factors

• Even within the fish kingdom there is a huge difference in digestive biology.

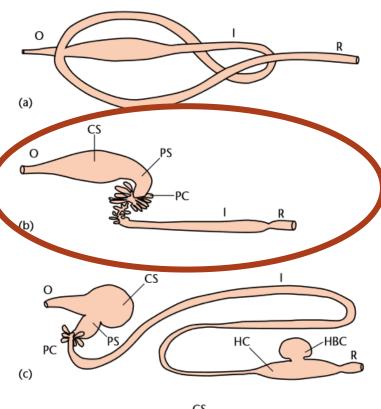
• Factors affecting digestive biology:

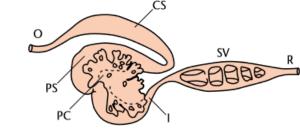
-Feeding strategy -Nutritional content -Size & structure of feed -How easy the food is to digest -Environmental factors

Nutritional Demands

Omnivores

Regardless of nutritional guild, fish have high protein and lipid demands

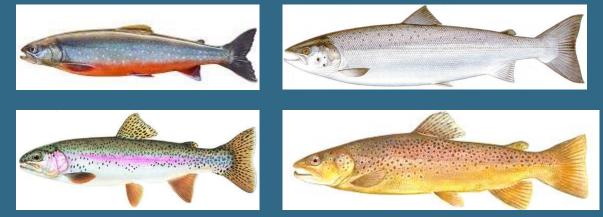

Carnivores


• These systems look different but have all the same function which is digestion but are designed for different environments, diets and nutritional needs.

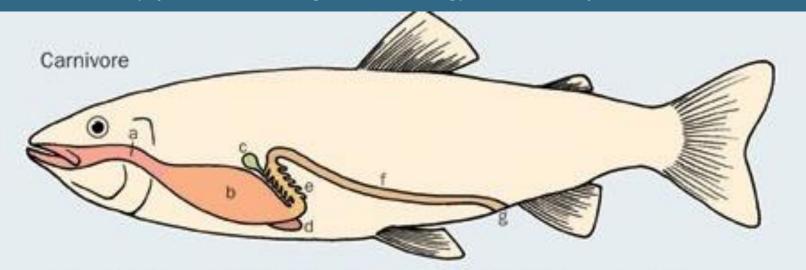
B) is the digestive tract of a Rainbow Trout

• Rainbow trout is a salmonid

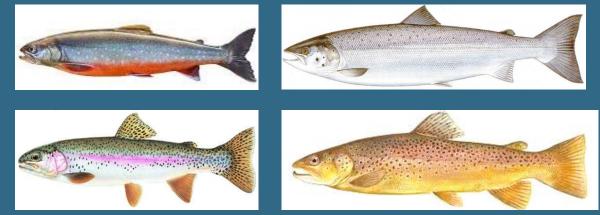
All from different types of fish



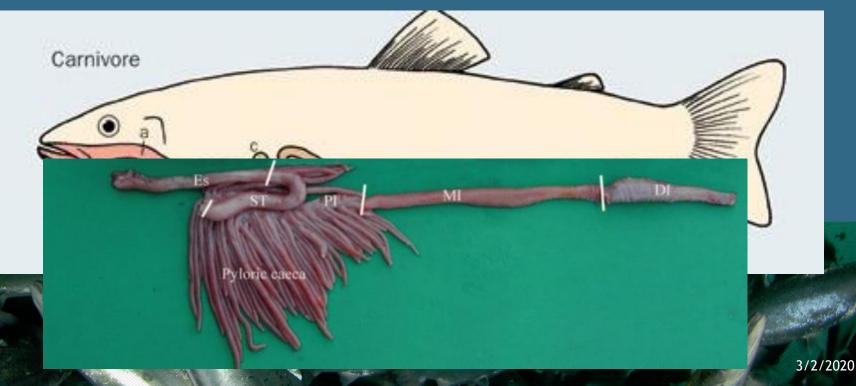
(d)


Digestive biology: Salmonids

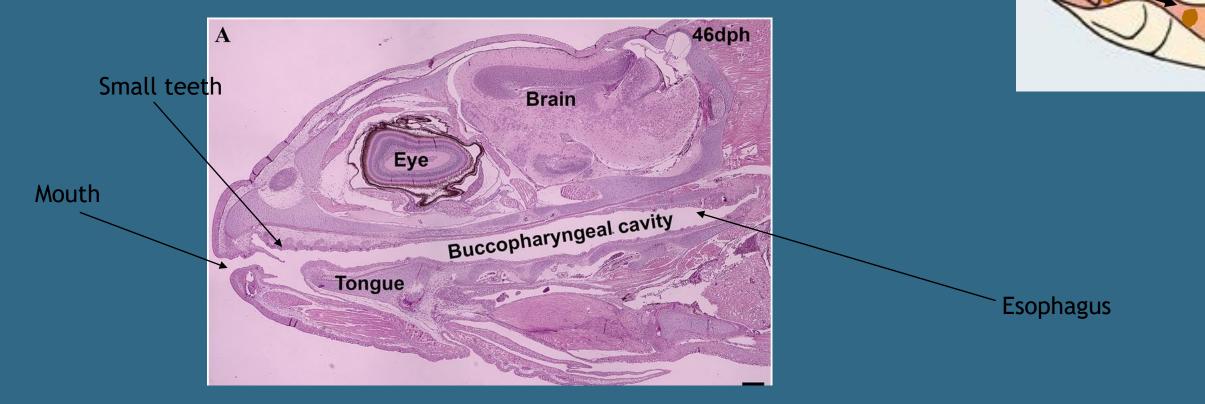
Reminder: What is a salmonid?


Key parts of the digestive biology we will explore

- a) Esophagus
- b) Stomach
- c) Gall bladder
- d) Spleen
- e) Pyloric ceaca
- f) Intestine (mid and hind)
- g) Anus

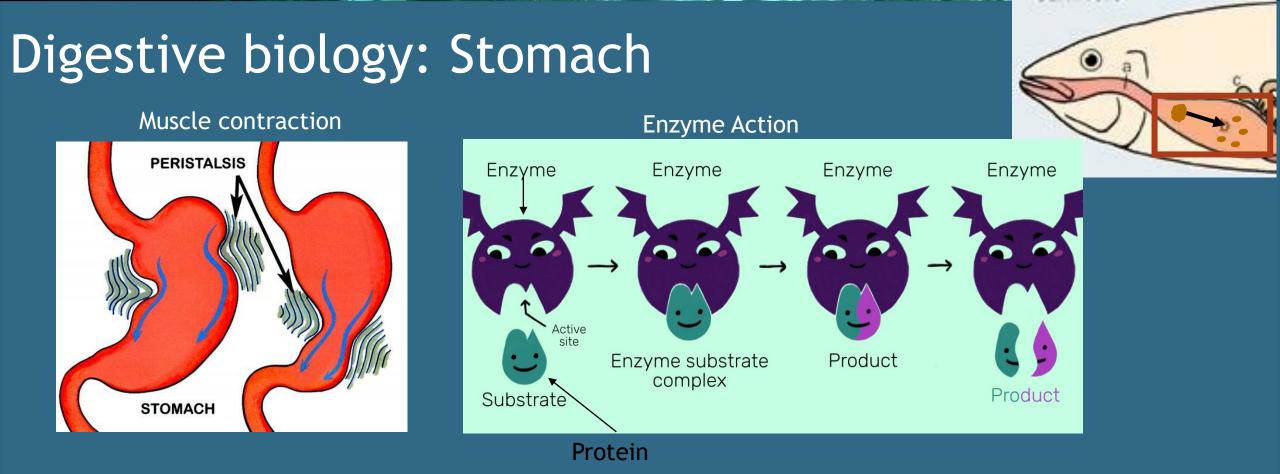

Digestive biology: Salmonids

Reminder: What is a salmonid?



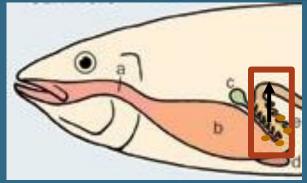
Key parts of the digestive biology we will explore

- a) Esophagus
- b) Stomach
- c) Gall bladder
- d) Spleen
- e) Pyloric ceaca
- f) Intestine (mid and hind)
- g) Anus



Digestive biology: Mouth and Esophagus

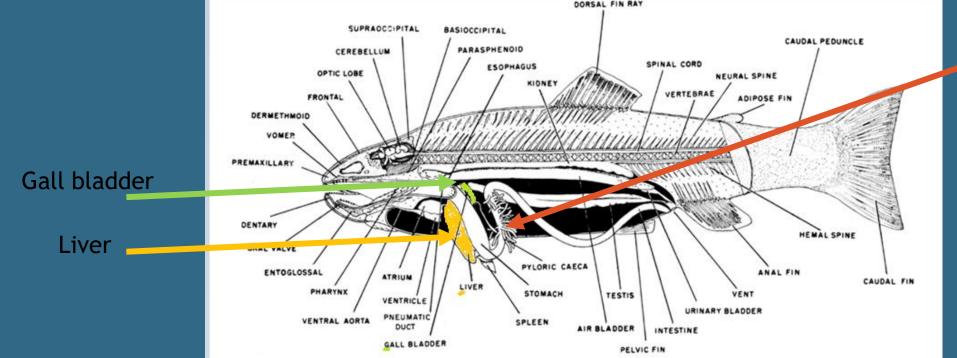
Function: The mouth acts as an opening for food and the esophagus facilitates food passing from the mouth to the stomach by muscle movement.



Function: <u>Mechanical digestion</u> of food from mixing and churning action of stomach muscles, breaking the food down into more manage particle sizes. <u>Chemical digestion</u> by enzymes called pepsins and breakdown by acidity.

Digestive biology: Pyloric caeca

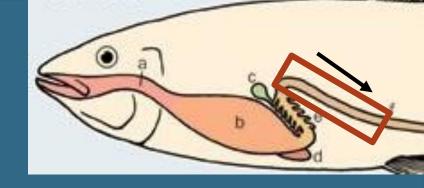
Digestive fluids: Bile, Pancreatic juices and mucus all reach the partially digested food here and help to break all the different components down to smaller and smaller sizes.



Bile from liver (made in gall bladder) Pancreatic juices (containing enzymes) and mucus.

Function: Location where the bulk of the <u>chemical digestion</u> is taking place (especially for fat and carbohydrates but also further breakdown of proteins and small peptides). <u>Absorption of nutrients</u> from digested food also starts here.

Digestive biology: Pancreas, Liver, Gall Bladder


Function: Production or transport of important fluids to the pyloric caeca and mid-intestine that aid facilitate chemical digestion.

Pancreas found

pyloric caeca

inside the


Digestive biology: mid-intestine

In the blood stream.


LOW

CONCENTRATIO

Hind-int€

MI

Microbiome IN NUMBERS

100 Trillion symbiotic microbes live in and on every person and make up the human microbiota

The human body has more microbes than there are stars in the milky way

of our microbiota is located in the GI tract

The genes in your microbiome outnumber the genes in our genome by about 150 to one

>10,000

Number of different microbial species that researc

have identified living in and on the human body

The surface area of the GI tract is You have the same size as 2 tennis courts

2kg

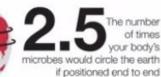
nore microbes than human cells

The gut microbiota can weigh up to 2Kg

Microbiome Ireland

Interfacing Food & Medicine

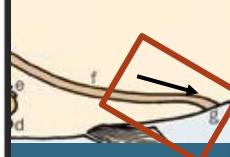
It is


thought that

The microbiome is more medically accessible and manipulable than the human genome

of disease can be linked in some way back to the gut and health of the microbiome

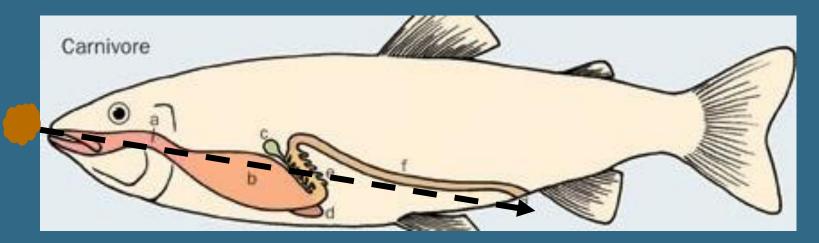
Viruses:Bacteria


in the gut microbiota

your body's nicrobes would circle the earth if positioned end to end

of times

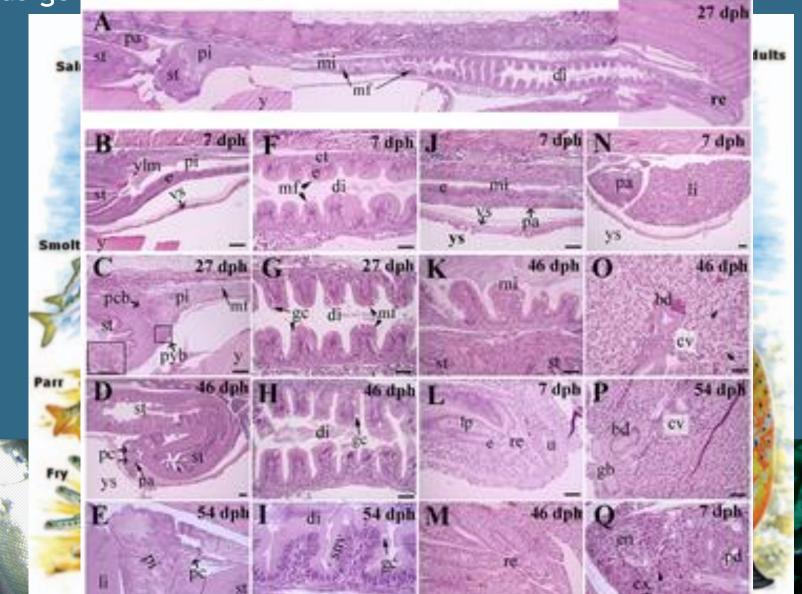
Each individual has a unique gut microbiota, as personal as a fingerprint


e intestines helps n and absorption

cretion of non-

Alexandra Leeper

Transit of food: Summary



- How long does this take in an adult Atlantic Salmon?
- What factors effect transit time through the digestive tract?

Development of Digestive Tract

• As salmonids go from egg to post-smolt adult

Alexandra Leeper

Module 1: Exercise 1.1

This exercise will be to label key parts of a fish digestive tract diagram and a small multiple-choice quiz using an online application.

Day 1 part 2 & Day 2

• Module 2 Part 2: Key nutritional requirements.

*Exercise 2.2

• Module 3: Aquafeed Formulation. *Exercise 3.1

Module 2 Key nutritional Requirements

Alexandra Leeper

We are what we eat.....and so are fish

Just like us, fish need certain dietary requirements in order to be healthy and ultimately tasty for the consumer.

Proteins

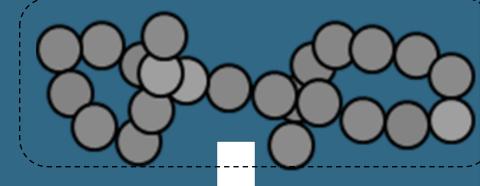
Fats

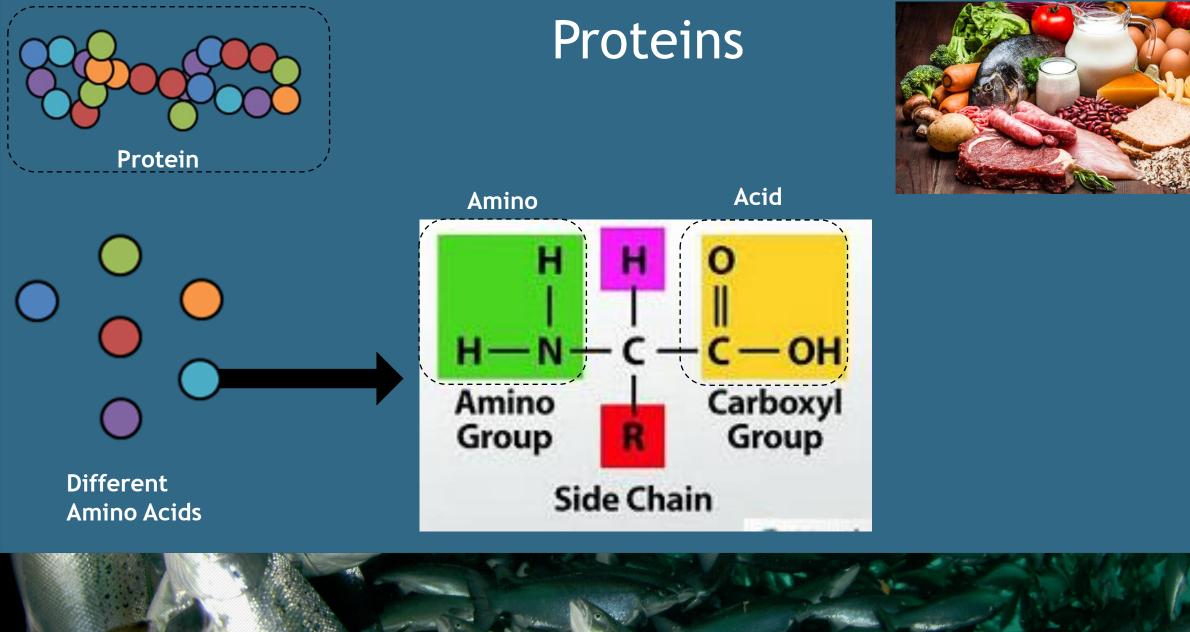
Proteins

Key Functions

Enzymes e.g. help in the break down of food <u>Muscle</u> Building Immune System e.g. Antibodies that fight disease

<u>Structure</u> e.g. Collagen found in ligaments/tendons


Hormones


for blood

e.g. insulin

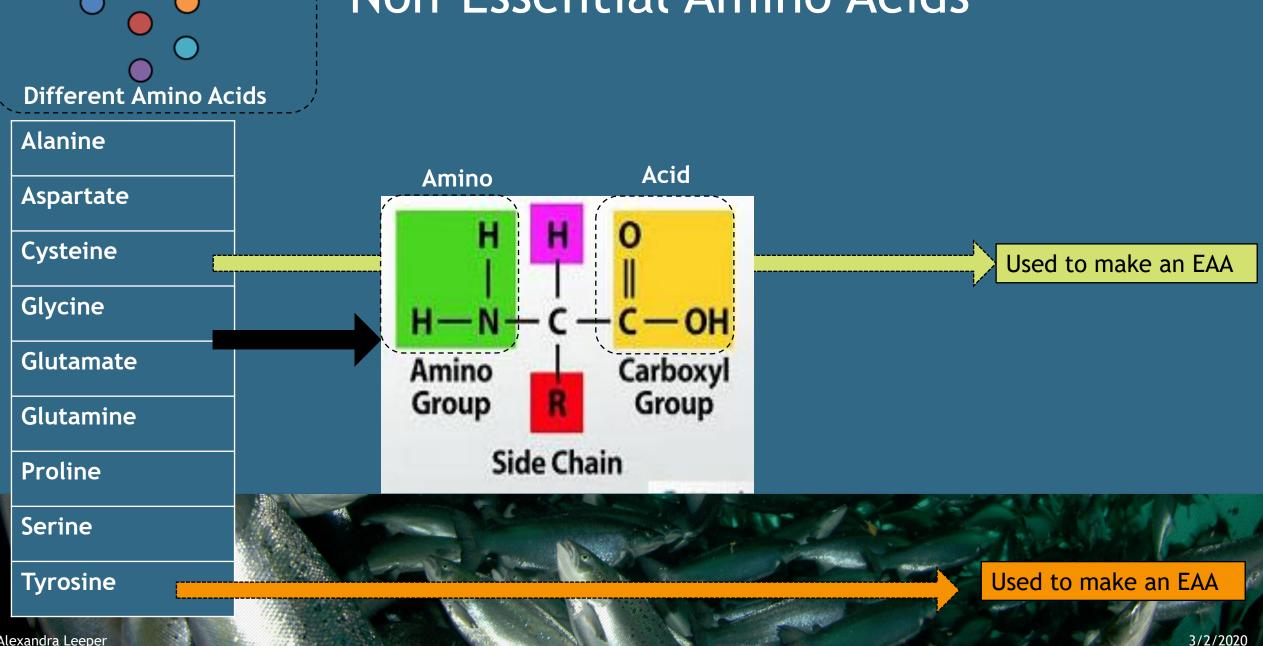
sugar control

Providing the body with amino acids

Essential Amino Acids

Examples of AA deficiencies

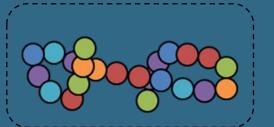
Lysine deficiency (Fin erosion)


Histidine deficiency (*Cataract*)

Leucine/Tryptophan/ Lysine

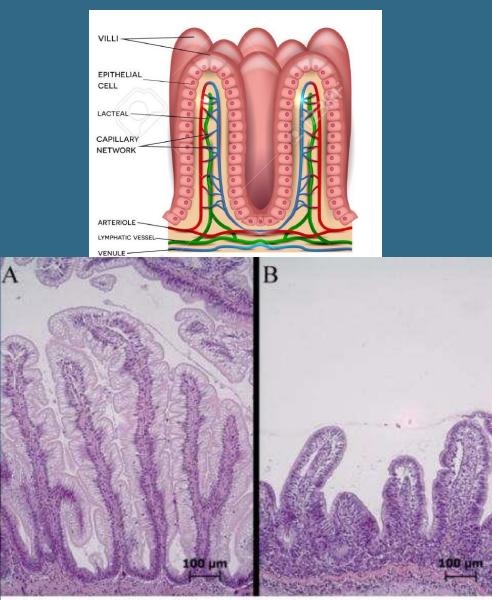
deficiency (Spinal deformities)

Different Amino Acids



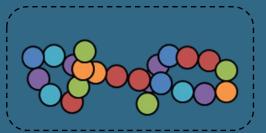
Soybean meal

Fish meal

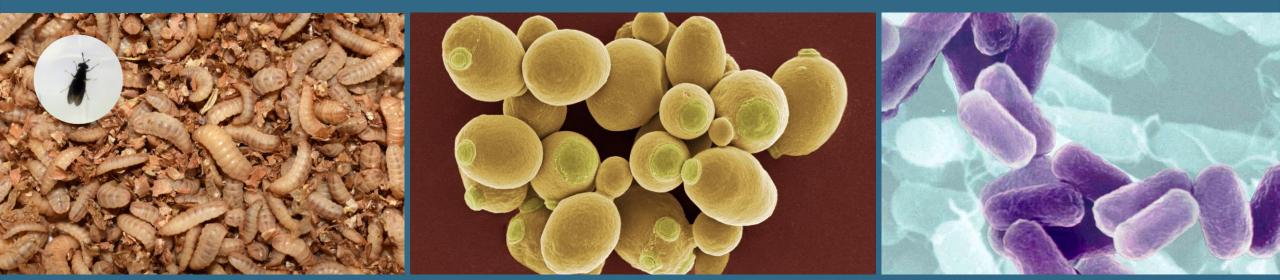


Protein Sources in Fish Feed

Rapeseed meal


Fishmeal

Soybean meal


3/2/2020

What makes soy problematic for salmon

Cell Soy		
	Ingredients	The Anti-Nutritional
	Soy Bean Meal	Trypsin Inhibitor, Lectins,
		Saponins, Oligosaccharides (Raffinose, Stachyose)
	Rapeseed Meal	Glucosinolates, Tannins, Phenolic acids, Fiber
	Sunflower Meal	Fiber, Tannins

Novel Protein Sources in Fish Feed

Insect Proteins

Fungal Proteins

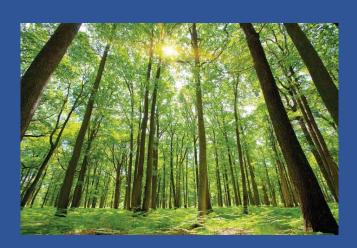
Bacterial Proteins

Alternatives: Insects


Pros

- Low water usage.
- Can be produced independent of location and climate.
- Very efficient converters of low value organic waste.
- Wide range of potential substrates
- Nutritional content linked to substrate grown on*.
- Can be produced in high density.
- Less competition with human market.

Cons


- Chitin (?).
- Strict European laws.
- Potential vectors for disease and transfer of pollutants.
- Lower protein content 40-45%.
- Scale of production is low.
- Cost of production is high.
- Lower palatability.

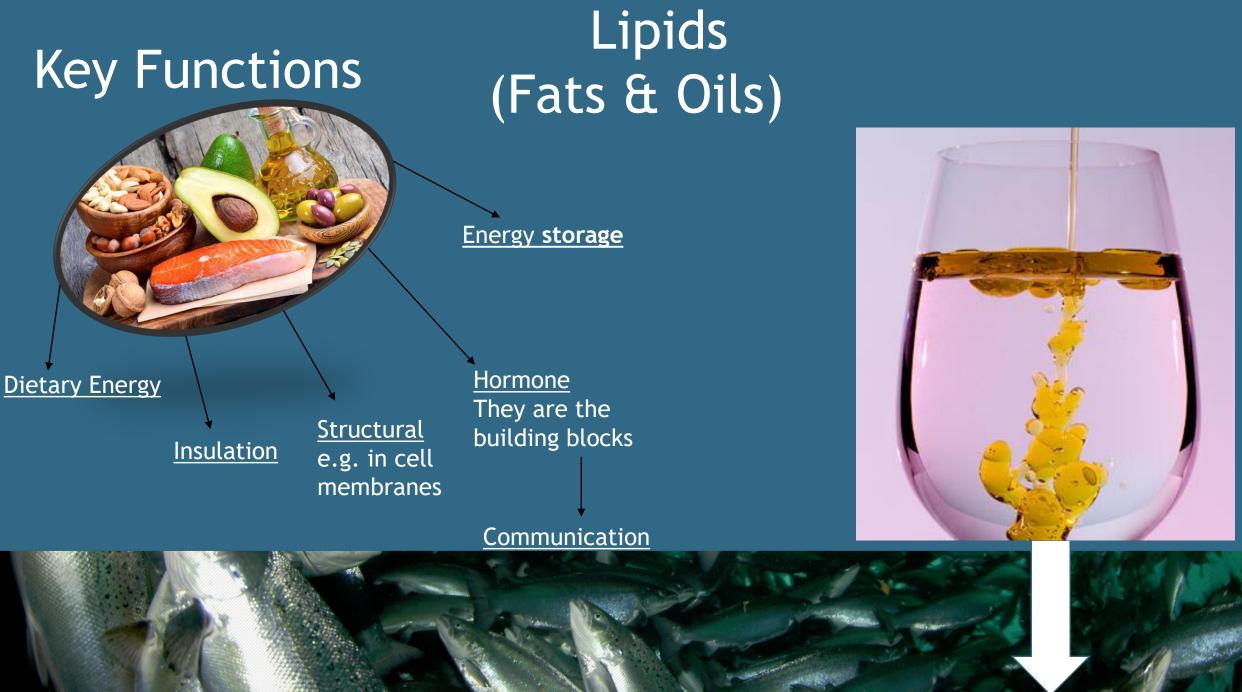
Alternatives: fungal proteins

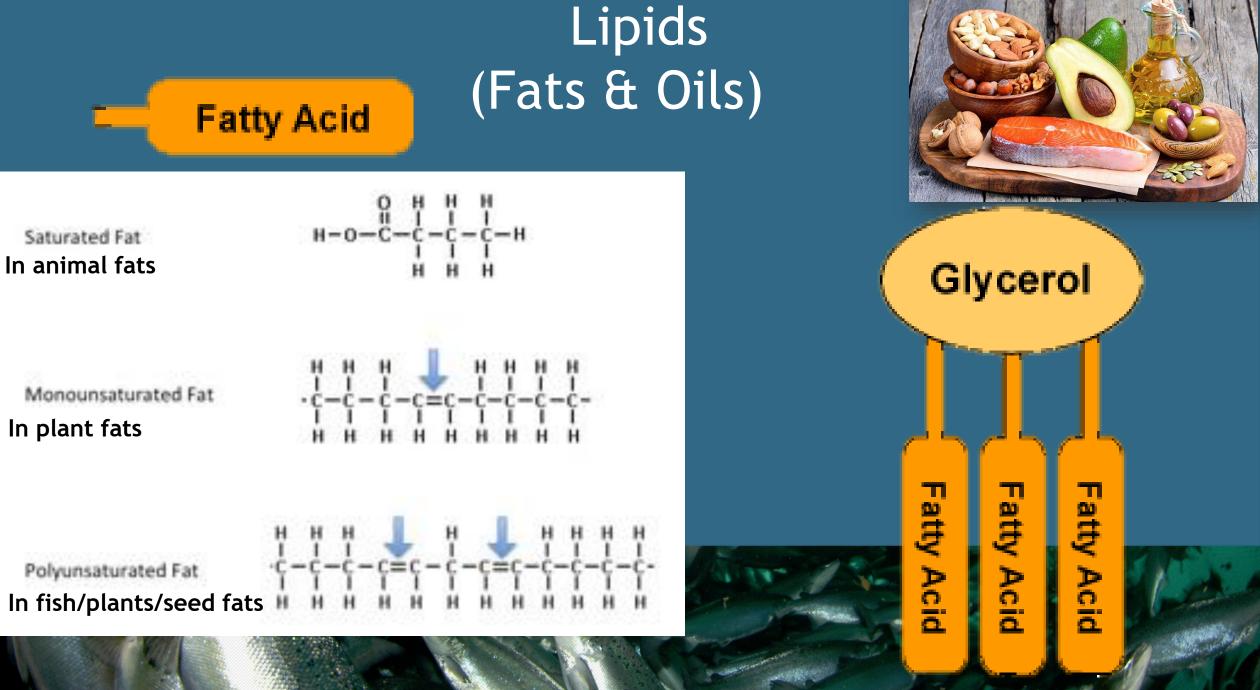
Pros

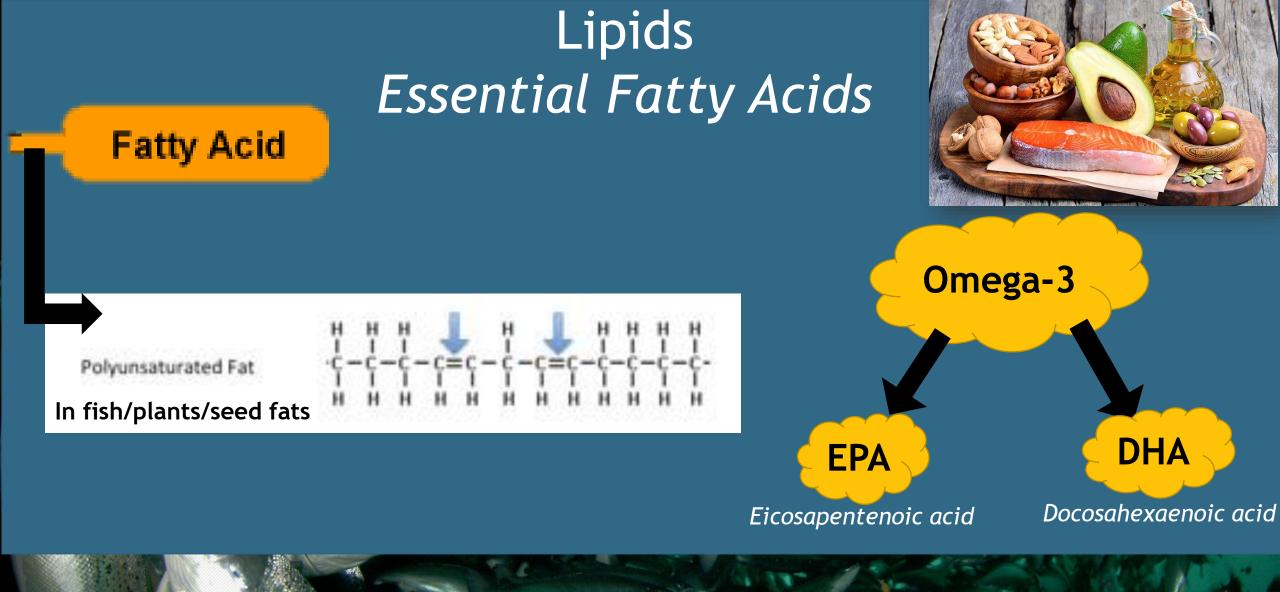
- Low water usage.
- Independent of location and climate.
- Substrates can be sourced from a wide range of industries*
- Can be produced in high density.
- Less competition with human market.
- Highly palatable to fish.
- Potential immuno-stimulant properties.

Cons

- Access to substrates at scale.
- Limit volume production and high volumes struggle for protein content.
- Cost of production is high.
- Some species or strains are pathogenic.
- Production and processing not yet optimised.
- Protein content (40-60%)
- Still a fairly new concept for fish.




We are what we eat.....and so are fish


Just like us, fish need certain dietary requirements in order to be healthy and ultimately tasty for the consumer.

Fats & Oils = Lipids

Alexandra Leeper

3/2/2020

Sources Essential Fatty Acids

Rapeseed Oil

Microalgae Oil

Fish Oil

Canola Oil

Alexandra Leeper

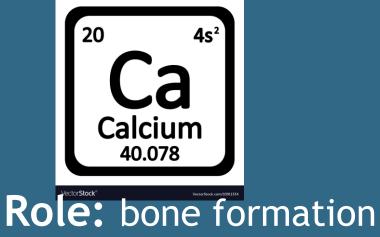
3/2/2020

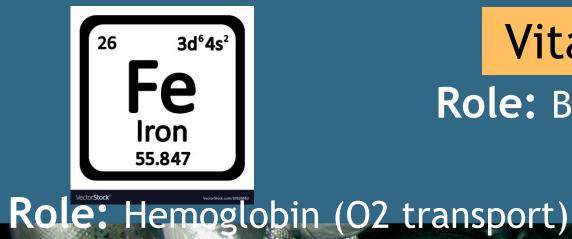
Carbohydrates

Glycogen

Cellulose

Chitin

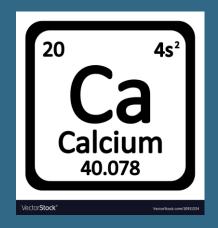



Role: Energy source & binding agent

Minerals, Vitamins & Pigments

Vitamin C

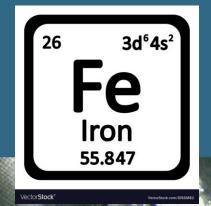
Role: Skeletal growth



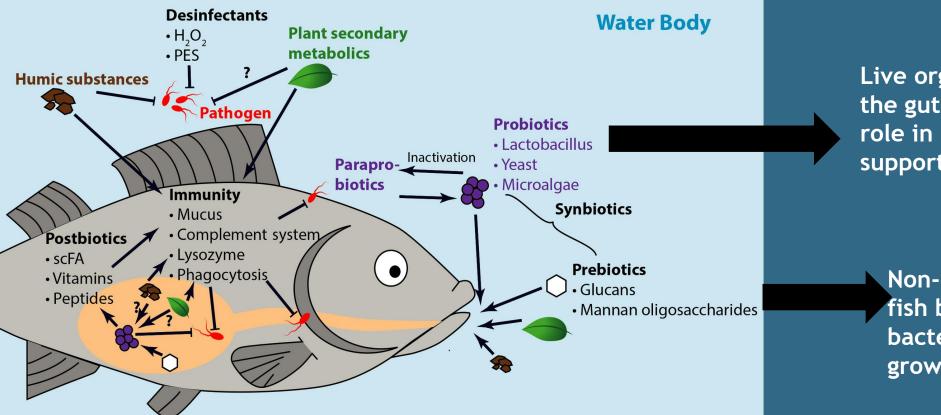
Vitamin K

Role: Blood clotting

Role: Health, Vit A (precursor), anti-oxidant

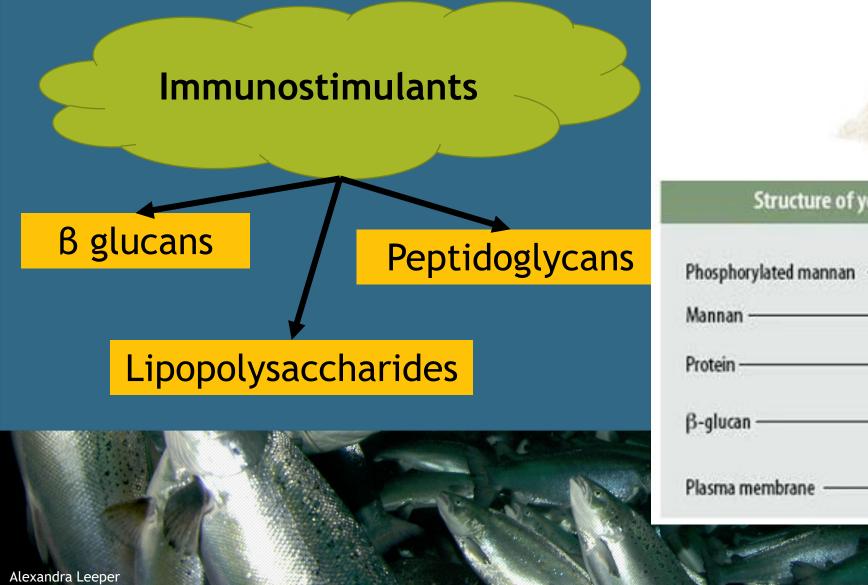


Minerals, Vitamins & Pigments

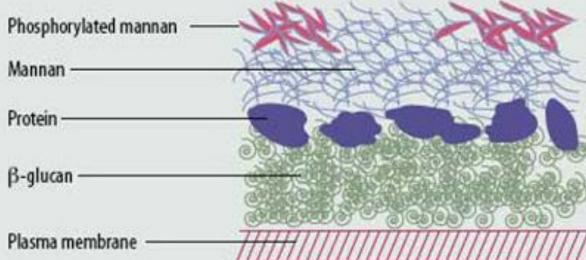


Vitamin K

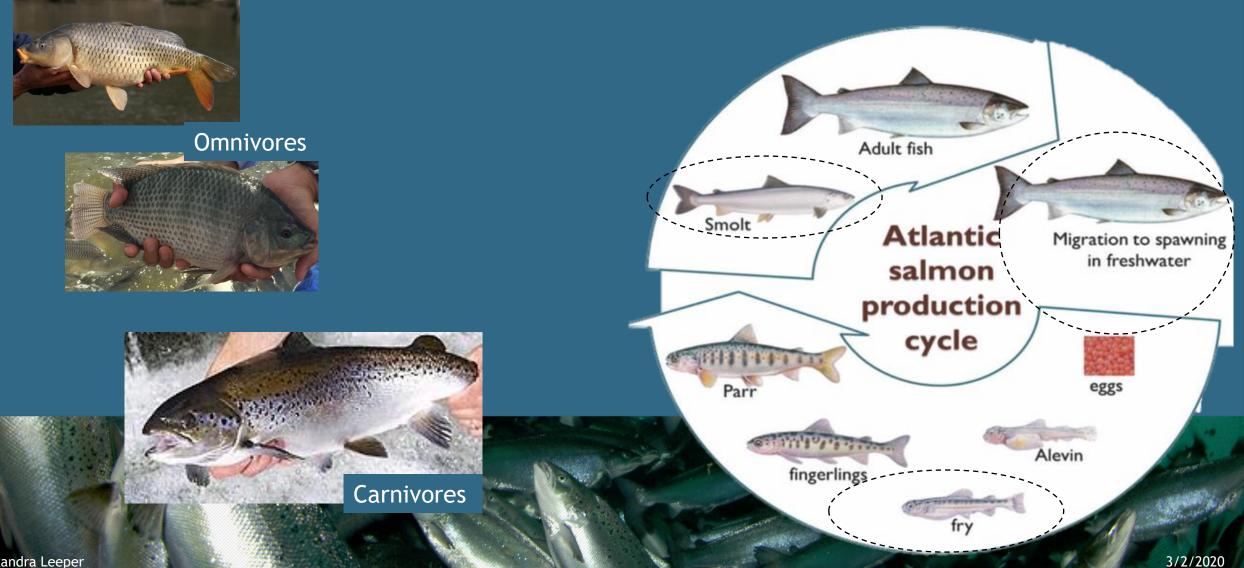
Source: natural prey (wild) from krill or red microalgae.


Probiotics and Prebiotics

Live organisms that directly alter the gut microbiome that play a role in digestion and immunosupport.


Non-digestible and benefit the fish by supporting beneficial bacteria in the gut and support of growth and metabolism.

Non-nutritional Ingredients


Structure of yeast cell wall

Nutritional Requirement Varies

Different species

Different developmental period

Nutrition Summary

Macro Nutrient	Key Roles
Protein	Enzymes, muscle building, hormones, structural proteins (collagen), immune support (anti-bodies), amino acid source.
Lipids	Dietary energy, insulation, cell membrane structure, hormone structure, energy storage, immune support.
Carbohydrates*	Energy Sources (herbivores/omnivores), binding agent (carnivores)

Micro-Nutrient	Key Roles
Minerals	e.g. bone formation and hemoglobin
Vitamins	e.g. skeletal growth and blood clotting
Pigments	Vitamin A production & Antioxidants, protecting fatty acids in eggs.

Source Summary

Macro Nutrient	Traditional Sources	Emerging sources
Protein	Fish meal, Soybean Meal, (some other plant meals)	Bacterial meals, fungal meals, Insect meals.
Lipids	Fish oil, rapeseed oil, canola oil*	Microalgae oils
Carbohydrates	Wheat	

Micro-Nutrient	Sources
Minerals	Mineral premix
Vitamins	Vitamin premix
Pigments	Crustacean material and red-microalgae

Module 2: Exercise 2.1 & Exercise 2.2

Fill in a blank table about the sources and roles of nutrients and a small multiple-choice quiz using an online application.

Module 3 Aquafeed Formulation

Feed formulation

• What is the species of interest?

- What is the developmental stage of the fish?
- What are the nutritional needs of that fish at that stage of its life? **PROTEIN**
- What ingredients are available and what are the nutritional

compositions of those ingredients?

Cost (?)

CARBS

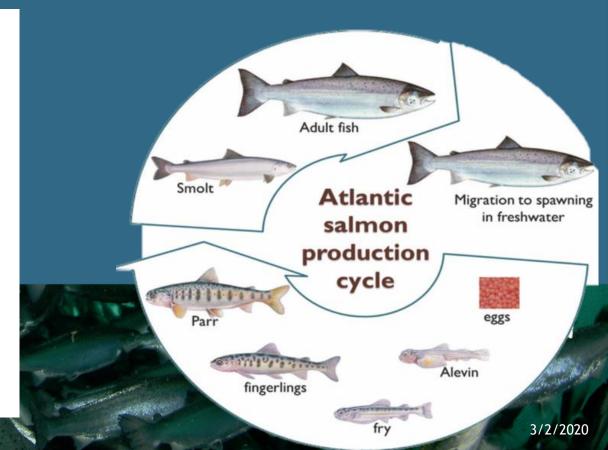
50%

20%

FAT 30%

Formulation for different species

Macro-nutrient	Common Carp	Nile Tilapia	Atlantic Salmon
Protein %	28	26	34
Lipid	5-15(omega3 & 6)	10-15(omega-6)	24 (Omega-3)
Carbohydrate	38.5	40	Not required for nutrition*

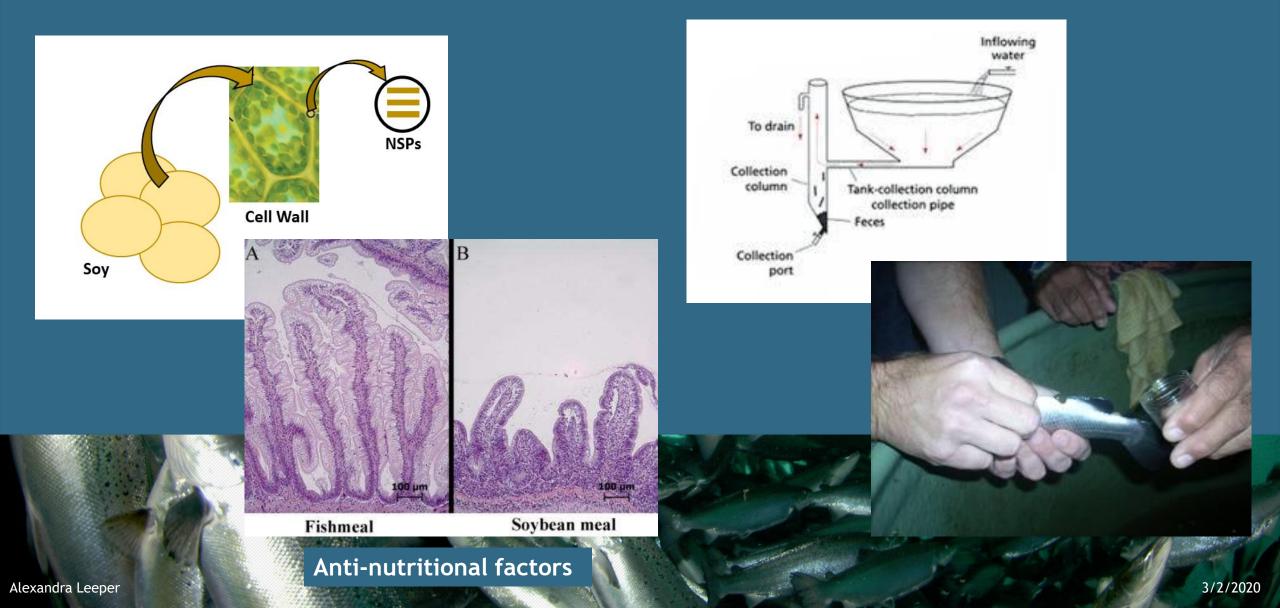


Requirement	Start-feed (fry)	Fingerlings	Parr	Smolt Post-smolt adul		Broodstock	
Protein %	48	48-44	44-40	38	34	34	

Requirement	Start-feed (fry)	Fingerlings	Parr	Smolt	Post-smolt adult	Broodstock
Protein %	48	48-44	44-40	38	34	34

Ingredient	Diet R1	Diet R2	Diet R3	Diet R4
Fishmeal	40	30	18	18
Soybean protein concentrate	0	5	10	10
Terrestrial Animal Protein	12	19	29	29
Fish Oil	9.6	9.8	10	10
Poultry Oil	9.6	9.8	10	10
Mannan oligosaccharide	0.2	0.2	0.2	0
Proximate analysis				
Digestible protein	39	39	39	39
Digestive energy	20	20	20	20

Requirement	Start-feed (fry)	Finge	rlings	Parr	Sn	nolt	Post-sn	nolt adult	Bro	odstoc	k
Protein %	48	48	3-44	44-40		38		34		34	4
	FM ^b	CU ^c	КМ ^с	SC ^c				FM diet	CU diet	KM diet	SC diet
Dry matter	918	937	939	968		Formulation, g kg ⁻¹					
-						Fish meal		579	347	347	347
Crude protein	735	560	511	460		Candida utilis		0	283	0	0
Nucleic acids	13	93	102	58		Kluyveromyces marxi	anus	0	0	302	0
Crude lipid	114	3	8	2		Saccharomyces cerevis	iae	0	0	0	345
Starch	10	37	8	11		Gelatinized potato s	tarch ^a	126	118	100	56
Ash	139	54	76	64		Fish oil ^b		137	162	161	161
Ca	26	2.7	0.5	0.7		Gelatin ^c		80	80	80	80
Р	20	15	15	11		Cellulose ^d		67	0	0	0
Se, mg kg ⁻¹	2.7	< 0.04	< 0.04	0.12		Premix ^e		9.9	9.9	9.9	9.9
Gross energy, MJ kg ⁻¹	22.3	21.4	20.5	19.6	1	$Y_2O_3^{f}$		0.1	0.1	0.1	0.1


Requirement	Start-feed (fry)	Finge	rlings	Parr	Smolt	Post-smolt adult	Broodstock
Protein %	48	48	3-44	44-40	38	34	34
	Table 1. Formulation, of the high marine did (Diet V ^{stimulus} and Diet Experimental phases Diets	et (Diet M ^{stimuli} V ^{challenge}) used	^{us}) and low fi	shmeal/fish oil diets tive feeding phases Challenge phase			
	Ingredients (g/kg) Fishmeal* Crustacean and fish SPC‡ Wheat gluten§ PPCII Wheat¶ Fish oil** Rapeseed oil§ Vitamins and minera Amino acids‡‡	peptones† 1		0 50-0 7 90-2 0 181-7 0 245-7 9 134-4 0 170-6 3 52-5		S	tlantic almon oduction
lexandra Leeper	Analysed proximate co Lipid – crude (%) Protein – crude (%) Energy – gross (MJ/ All fatty acids (% total f PUFA LA (18:2 <i>n</i> -6) ALA (18:3 <i>n</i> -3) EPA (20:5 <i>n</i> -3) DHA (22:6 <i>n</i> -3)	kg) fatty acids)	13.3 11.3 57.1 56.6 20.5 20.6 40.6 37.6 4.8 25.8 1.3 8.2 13.0 1.4 12.1 1.4	3 21.6 5 49.6 5 22.7 5 33.3 3 22.9 2 8.9 4 0.6	·	Parr Fingerlings	cycle eggs Alevin fry 3/2/2020

Additional Feed formulation considerations

- Digestibility & biological availability of feed ingredients
- Palatability & attractability of feed ingredients
- Compatibility with the pellet production process
- Anti-nutritional Factors & Toxins

Digestibility & availability

Palatability & Attractability

Module 3: Exercise 3.1

Match the formulation with the species and the developmental stage and justify answer. Explore the feed ingredients and info from diets fed on farms. Small question and answer session to review any material from the first three modules.

	FM ^b	CU ^c	КМ ^с	SC ^c		FM diet	CU diet
Dry matter	918	937	939	968	Formulation, g kg ⁻¹		
Crude protein	735	560	511	460	Fish meal	579	347
Nucleic acids	13	93	102	58	Candida utilis	0	283
					Kluyveromyces marxianus	0	0
Crude lipid	114	3	8	2	Saccharomyces cerevisiae	0	0
Starch	10	37	8	11	Gelatinized potato starch ^a	126	118
Ash	139	54	76	64	Fish oil ^b	137	162
Ca	26	2.7	0.5	0.7	Gelatin ^c	80	80
Р	20	15	15	11	Cellulose ^d	67	0
					Premix ^e	9.9	9.9
Se, mg kg ⁻¹	2.7	< 0.04	< 0.04	0.12	$Y_2O_3^{f}$	0.1	0.1
Gross energy, MJ kg ⁻¹	22.3	21.4	20.5	19.6			

KM diet

9.9

0.1

SC diet

9.9

0.1

Ingredient	Diet R1	Diet R2	Diet R3	Diet R4
Fishmeal	40	30	18	18
Soybean protein concentrate	0	5	10	10
Terrestrial Animal Protein	12	19	29	29
Fish Oil	9.6	9.8	10	10
Poultry Oil	9.6	9.8	10	10
Mannan oligosaccharide	0.2	0.2	0.2	0
Proximate analysis				
Digestible protein	39	39	39	39
Digestive energy	20	20	20	20

3/2/2020

5		
Ingredients:	Unit	FM 0
Fish meal	g/kg	676,8
Fish oil	g/kg	103,5
Wheat	g/kg	209,7
Plant protein mix	g/kg	0,0
Corn gluten meal	g/kg	0,0
Soy protein concentrate	g/kg	0,0
Wheat gluten meal	g/kg	0,0
SYLPRO ®	g/kg	0,0
Lysine	g/kg	0,0
Methionine	g/kg	0,0
Premix	g/kg	10,0
		1000,0
Nutrient composition, ca	lculated	
as is:		
Dry matter	g/kg	923,3
Crude protein	g/kg	500,0
Crude lipid	g/kg	160,0
Crudo fibor	a / I.a	
Crude fiber	g/kg	4,6
Crude ash	g/kg	100,0
NFE	g/kg	144,5
Starch	g/kg	124,6
Phosphor	g/kg	14,6
Lysine	g/kg	35,1
Cystine	g/kg	4,7
Methionine	g/kg	13,1
Methionine + Cystein	g/kg	17,9
Histidin	g/kg	11,1
GE (Calculated)	MJ/kg	20,7

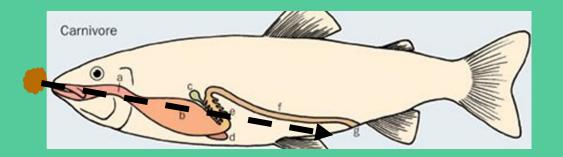
Ingredients:	Unit	FM 0
Fish meal	g/kg	401,8
Fish oil	g/kg	38,3
Wheat	g/kg	549,9
Plant protein mix	g/kg	0,0
Corn gluten meal	g/kg	0,0
Soy protein concentrate	g/kg	0,0
Wheat gluten meal	g/kg	0,0
SYLPRO ®	g/kg	0,0
Lysine	g/kg	0,0
Methionine	g/kg	0,0
Premix	g/kg	10,0
Nutrient composition, calo	culated as	
📶 is:		
Dry matter	g/kg	895,3
Crude protein	g/kg	350,0
Crude lipid	g/kg	80,0
Crude fiber	g/kg	12,1
Crude ash	g/kg	69,9
NFE	g/kg	398,9
Starch	g/kg	326,6
Phosphor	g/kg	10,1
Lysine	g/kg	22,3
Cystine	g/kg	4,0
Methionine	g/kg	8,6
Methionine + Cystein	g/kg	12,6
Histidin	g/kg	7,8
GE (Calculated)	MJ/kg	18,3

Table 1

Dietary formulation and proximate composition of the diets

Feed formula	%	Proximate composition	%
Fish meal ^a	56.0	Crude protein (N×6.25)	49.1
Fish oil ^b	12.5	Lipid	14.4
Extruded wheat	28.0	Nitrogen free extract	16.9
Binder (Tylose)	2.0	Moisture	9.3
Vitamin premix °	1.0	Ash	10.3
Mineral premix ^c	0.5		
Carophyll Pink (5% astax.)	$(0 \text{ or } 2 \text{ g } \text{kg}^{-1})$		

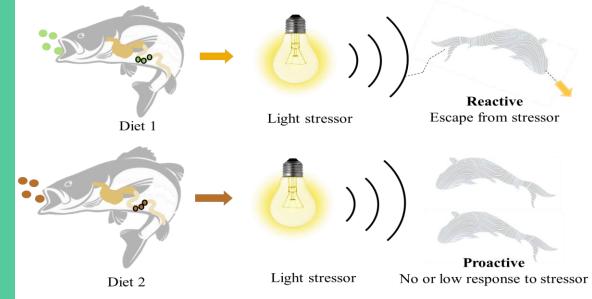
^a Norse LT, Norsildmel, Bergen, Norway.


^b Refined sardine oil (canning oil) and cod-liver oil (medicine oil) (1:1), JC Martens a.s, Bergen, Norway.

^c Standard proprietary premixes (Ewos Aqua, Sweden).

Homework module 1-3

To be set



Factors to consider in feeding

Gut microbiome (gut-brain-axis)

Behaviour and welfare

Ice and fire and aquaculture

The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein